Azimuthal Decorrelations with Early ATLAS Data

ϕ Decorrelation in Dijet Events

Azimuthal angle between leading two jets reflects activity in rest of event

- Soft radiation causes small azimuthal decorrelations
- Additional hard radiation can lead to large azimuthal decorrelations

 $\Delta\phi_{\rm dijet}$ sensitive to higher-order QCD radiation without explicitly measuring additional jets \Rightarrow tests $\mathcal{O}(\alpha_s^4)$ calculations

- both leading jets at central rapidities provides a precision test of NLO pQCD
- both leading jets at large rapidities also probes BFKL (rapidity gaps)
- other configurations useful for tuning Monte Carlo event generators

- Check NLO pQCD with limited statistics $(\int \mathcal{L} \sim 1 \text{pb}^{-1})$ and large JES uncertainty
- Analysis presented today performed using PYTHIA J3-7 dijets. ALPGEN+HERWIG substitutes for data.
- Will expand measurement (e.g., multiple p_T bins, larger y coverage) with more integrated luminosity and calibrated JES.

 $\Delta \phi_{\text{dijet}}$

Event Selection

- anti- k_T jets with D=0.6
 - apply MC-based JES using H1 with NI
 - no jet quality or overlap-removal criteria
- Require both leading jets to have |y| < 0.5
 - avoids crack region and lack of data-derived η-dependent JES corrections
 - can be expanded up to |y| < 1 if additional statistics are necessary
- Require leading jet p_T > 250 GeV based on inclusive jet trigger turn-on
 - must be on plateau
 - lowest threshold unprescaled trigger is L1_J130
 - L1_J120 exists in MC; scale up
- Require second leading jet $p_T > 100 \text{ GeV}$ based on jet-reconstruction efficiency
 - use track-based jets to determine turn-on
 - must be on plateau
 - 100 GeV requirement extremely conservative;
 can lower to ~ 70 GeV to increase statistics

Analysis Issues

Data quality a key concern with events from the very early running period

- need tracker and calorimeter
- no attempt (yet) to use standard DQ tools
- use track-jets to identify calorimeter problems (hot cells, dead FEB)
- remove bad phase space
- correct for lost geometrical acceptance

- efficiencies must be flat versus $\Delta \phi$
- absolute efficiency not important (no luminosity uncertainty)
- reduced dependence on JES
 - angles less sensitive to JES variations
 - requires ϕ intercalibration
 - absolute JES is dominant systematic uncertainty, however, effect limited to smearing across minimum p_T cuts

Unfolding

Result corrected for finite experimental resolution to compare with NLO pQCD prediction

- measure jet resolutions:
 - p_T resolution extracted using dijet asymmetry
 - same method can measure $\Delta \phi$ resolution for $\Delta \phi \sim \pi \Rightarrow$ compare data and MC
 - take ϕ and y resolutions from MC
- studying two unfolding techniques:
 - highly parameterized MC (resolution functions)
 - regularized migration matrix (SVD in RooUnfold)
- current result uses truth-based unfolding
- bins chosen to have ≈ 90% purity

Measurement

Considered following sources of systematic uncertainty:

- ±15% absolute JES dominant source of systematic uncertainty
- \pm 5% ϕ -intercalibration
- (implemented as a $\cos \phi$ distribution)
- ±5% unfolding

ALPGEN + HERWIG "data" assuming $\int \mathcal{L} = 1 \text{pb}^{-1}$ compared to NLO pQCD calculation (NLOJET++)

- scale uncertainty indicated by yellow band
- MSTW2008 NLO PDF (68% CL)